FAIRCHILD

SEMICONDUCTOR

CD4016BC Quad Bilateral Switch

General Description

The CD4016BC is a quad bilateral switch intended for the transmission or multiplexing of analog or digital signals. It is pin-for-pin compatible with CD4066BC.

Features

- Wide supply voltage range: 3V to 15V
- \blacksquare Wide range of digital and analog switching: ±7.5 $V_{\mbox{PEAK}}$
- "ON" Resistance for 15V operation: 400Ω (typ)
- Matched "ON" Resistance over 15V signal input:
- $\Delta R_{ON} = 10\Omega \text{ (typ)}$
- High degree of linearity:
 0.4% distortion (typ)

Extremely low "OFF" switch leakage: 0.1 nA (typ.) @ $V_{DD} - V_{SS} = 10V$ $T_A = 25^{\circ}C$ Extremely high control input impedance: $10^{12}\Omega$ (typ)

November 1983

Revised March 2002

- Low crosstalk between switches: -50 dB (typ.)
 - @ $f_{IS}\,{=}\,0.9$ MHz, $R_L\,{=}\,1~k\Omega$
- Frequency response, switch "ON": 40 MHz (typ)

Applications

- Analog signal switching/multiplexing Signal gating Squelch control Chopper
 - Modulator/Demodulator
 - Commutating switch
- Digital signal switching/multiplexing
- CMOS logic implementation
- Analog-to-digital/digital-to-analog conversion
- Digital control of frequency, impedance, phase, and analog-signal gain

Ordering Code:

Order Number	Package Number	Package Description
CD4016BCM	M14A	14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow
CD4016BCN	N14A	14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide

Devices also available in Tape and Reel. Specify by appending the letter suffix "X" to the ordering code.

Connection Diagram

© 2002 Fairchild Semiconductor Corporation DS005661

www.fairchildsemi.com

OUT/IN

CD4016BC

Absolute Maximum Ratings(Note 1) (Note 2)

V _{DD} Supply Voltage	-0.5V to +18V
V _{IN} Input Voltage	$-0.5V$ to $V_{\mbox{DD}}+0.5V$
T _S Storage Temperature Range	$-65^{\circ}C$ to $+$ 150 $^{\circ}C$
Power Dissipation (P _D)	
Dual-In-Line	700 mW
Small Outline	500 mW
Lead Temperature	
(Soldering, 10 seconds)	260°C

Recommended Operating Conditions (Note 2)

V _{DD} Supply Voltage	3V to 15V
V _{IN} Input Voltage	0V to V _{DD}
T _A Operating Temperature Range	-55°C to +125°C

Note 1: "Absolute Maximum Ratings" are those values beyond which the
safety of the device cannot be guaranteed. They are not meant to imply
that the devices should be operated at these limits. The tables of "Recom-
mended Operating Conditions" and "Electrical Characteristics" provide con-

ditions for actual device operation. Note 2: V_{SS} = 0V unless otherwise specified.

DC Electrical Characteristics (Note 2)

Symbol	Baramatar	Conditions	-5	5°C		25°C		+12	5°C	Unito
Symbol	Farameter	Conditions	Min	Max	Min	Тур	Max	Min	Max	Units
I _{DD}	Quiescent Device	$V_{DD} = 5V$, $V_{IN} = V_{DD}$ or V_{SS}		0.25		0.01	0.25		7.5	μΑ
	Current	$V_{DD}{=}10V,V_{IN}{=}V_{DD}$ or V_{SS}		0.5		0.01	0.5		15	μΑ
		V_{DD} = 15V, V_{IN} = V_{DD} or V_{SS}		1.0		0.01	1.0		30	μΑ
Signal In	outs and Outputs									
R _{ON}	"ON" Resistance	$R_L = 10 k \Omega$ to $(V_{DD} - V_{SS})/2$								
		$V_{C} = V_{DD}, V_{IS} = V_{SS} \text{ or } V_{DD}$								
		$V_{DD} = 10V$		600		250	660		960	Ω
		$V_{DD} = 15V$		360		200	400		600	Ω
		$R_L = 10k\Omega$ to $(V_{DD} - V_{SS})/2$								
		$V_{C} = V_{DD}$								
		$V_{DD} = 10V, V_{IS} = 4.75 \text{ to } 5.25V$		1870		850	2000		2600	Ω
		$V_{DD} = 15V, V_{IS} = 7.25 \text{ to } 7.75V$		775		400	850		1230	Ω
ΔR_{ON}	∆"ON" Resistance	$R_L = 10k\Omega$ to $(V_{DD} - V_{SS})/2$								
	Between any 2 of	$V_{C} = V_{DD}$, $V_{IS} = V_{SS}$ to V_{DD}								
	4 Switches	$V_{DD} = 10V$				15				Ω
	(In Same Package)	$V_{DD} = 15V$				10				Ω
IIS	Input or Output	$V_{C} = 0, V_{DD} = 15V$		±50		±0.1	±50		±500	nA
	Leakage	V _{IS} = 0V or 15V,								
	Switch "OFF"	$V_{OS} = 15V \text{ or } 0V$								
Control In	nputs									
VILC	LOW Level Input	$V_{IS} = V_{SS}$ and V_{DD}								
	Voltage	$V_{OS} = V_{DD}$ and V_{SS}								
		$I_{IS} = \pm 10 \ \mu A$								
		$V_{DD} = 5V$		0.9			0.7		0.5	V
		$V_{DD} = 10V$		0.9			0.7		0.5	V
		$V_{DD} = 15V$		0.9			0.7		0.5	V
VIHC	HIGH Level Input	$V_{DD} = 5V$	3.5		3.5			3.5		V
	Voltage	$V_{DD} = 10V$	7.0		7.0			7.0		V
		$V_{DD} = 15V$	11.0		11.0			11.0		V
		(Note 3) and Table 1								
I _{IN}	Input Current	$V_{CC} - V_{SS} = 15V$		±0.1		±10 ⁻⁵	±0.1		±1.0	μΑ
		$V_{DD} \ge V_{IS} \ge V_{SS}$								
		$V_{DD} \ge V_C \ge V_{SS}$								

mer

Note 3: If the switch input is held at V_{DD} , V_{HC} is the control input level that will cause the switch output to meet the standard "B" series V_{OH} and I_{OH} output levels. If the analog switch input is connected to V_{SS} , V_{HC} is the control input level — which allows the switch to sink standard "B" series $|I_{OH}|$, HIGH level current, and still maintain a $V_{OL} \le$ "B" series. These currents are shown in Table 1.

1 <u>A</u> = 20 C	$r_{\rm r}$, $r_{\rm r}$ = $r_{\rm f}$ = 20 ms and $v_{\rm SS}$ = 00 unless			-		
Symbol	Parameter	Conditions	Min	Тур	Max	Units
PHL, ^t PLH	Propagation Delay Time	$V_{C} = V_{DD}, C_{L} = 50 \text{ pF}, \text{ (Figure 1)}$				
	Signal Input to Signal Output	$R_L = 200k$				
		$V_{DD} = 5V$		58	100	ns
		V _{DD} = 10V		27	50	ns
		$V_{DD} = 15V$		20	40	ns
_{PZH} , t _{PZL}	Propagation Delay Time	$R_L = 1.0 \text{ k}\Omega$, $C_L = 50 \text{ pF}$, (Figure 2, Figure 3)				
	Control Input to Signal	$V_{DD} = 5V$		20	50	ns
	Output HIGH Impedance to	$V_{DD} = 10V$		18	40	ns
	Logical Level	$V_{DD} = 15V$		17	35	ns
PHZ, t _{PLZ}	Propagation Delay Time	$R_L = 1.0 \text{ k}\Omega, C_L = 50 \text{ pF}, \text{ (Figure 2, Figure 3)}$				
	Control Input to Signal	$V_{DD} = 5V$		15	40	ns
	Output Logical Level to	$V_{DD} = 10V$		11	25	ns
	HIGH Impedance	$V_{DD} = 15V$		10	22	ns
	Sine Wave Distortion	$V_{C} = V_{DD} = 5V, V_{SS} = -5$		0.4		%
		$R_L = 10 \text{ k}\Omega, V_{IS} = 5 V_{P\text{-}P}, f = 1 \text{kHz},$				
		(Figure 4)				
	Frequency Response — Switch	$V_{C} = V_{DD} = 5V, V_{SS} = -5V,$		40		MHz
	"ON" (Frequency at -3 dB)	$R_L = 1 \ k\Omega, \ V_{IS} = 5 \ V_{P-P},$				
		20 Log ₁₀ V _{OS} /V _{OS} (1 kHz) –dB,				
		(Figure 4)				
	Feedthrough — Switch "OFF"	$V_{DD} = 5V, V_C = V_{SS} = -5V,$		1.25		MHz
	(Frequency at –50 dB)	$R_L = 1 \ k\Omega, \ V_{IS} = 5 \ V_{P-P},$				
		$20 \text{ Log}_{10} (V_{OS}/V_{IS}) = -50 \text{ dB},$				
		(Figure 4)				
	Crosstalk Between Any Two	$V_{DD} = V_{C(A)} = 5V; V_{SS} = V_{C(B)} = -5V,$		0.9		MHz
	Switches (Frequency at -50 dB)	$R_L = 1 \ k\Omega V_{IS(A)} = 5 \ V_{P-P},$				
		20 $Log_{10} (V_{OS(B)}/V_{OS(A)}) = -50 \text{ dB},$				
		(Figure 5)				
	Crosstalk; Control Input to	$V_{DD} = 10V, R_L = 10 \ k\Omega$		150		mV _{P-P}
	Signal Output	$R_{IN} = 1 \ k\Omega, \ V_{CC} = 10V$ Square Wave,				
		C _L = 50 pF (Figure 6)				
	Maximum Control Input	$R_L = 1 \text{ k}\Omega$, $C_L = 50 \text{ pF}$, (Figure 7)				
		$V_{OS(f)} = \frac{1}{2} V_{OS}(1 \text{ kHz})$				
		$V_{DD} = 5V$		6.5		MHz
		$V_{DD} = 10V$		8.0		MHz
		$V_{DD} = 15V$		9.0		MHz
C _{IS}	Signal Input Capacitance			4		pF
C _{OS}	Signal Output Capacitance	V _{DD} = 10V		4		pF
C _{IOS}	Feedthrough Capacitance	$V_{C} = 0V$		0.2	1	pF
C _{IN}	Control Input Capacitance			5	7.5	pF

Note 4: AC Parameters are guaranteed by DC correlated testing.

Note 5: These devices should not be connected to circuits with the power "ON".

Note 6: In all cases, there is approximately 5 pF of probe and jig capacitance on the output; however, this capacitance is included in C_L wherever it is specified.

Note 7: V_{IS} is the voltage at the in/out pin and V_{OS} is the voltage at the out/in pin. V_C is the voltage at the control input.

www.fairchildsemi.com

www.fairchildsemi.com

4

www.fairchildsemi.com

CD4016BC

Temperature		Switch Input					Switch Output		
Range	V _{DD} V _{IS} I _{IS} (mA)				V _{OS} (V)				
			−40°C	25°C	+85°C	Min	Max		
	5	0	0.2	0.16	0.12		0.4		
	5	5	-0.2	-0.16	-0.12	4.6			
	10	0	0.5	0.4	0.3		0.5		
SOMMERCIAL	10	10	-0.5	-0.4	-0.3	9.5			
	15	0	1.4	1.2	1.0		1.5		
	15	15	-1.4	-1.2	-1.0	13.5			

Special Considerations

The CD4016B is composed of 4, two-transistor analog switches. These switches do not have any linearization or compensation circuitry for " R_{ON} " as do the CD4066B's. Because of this, the special operating considerations for the CD4066B do not apply to the CD4016B, but at low supply voltages, \leq 5V, the CD4016B's On Resistance becomes

non-linear. It is recommended that at 5V, voltages on the in/out pins be maintained within about 1V of either V_{DD} or V_{SS} ; and that at 3V the voltages on the in/out pins should be at V_{DD} or V_{SS} for reliable operation.

CD4016BC

CD4016BC Quad Bilateral Switch

www.fairchildsemi.com